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Abstract
The sheer volume of new malware found each day is
enormous. Worse, current trends show the amount of
malware is doubling each year. The large-scale volume
has created a need for automated large-scale triage tech-
niques. Typical triage tasks include clustering malware
into families and finding the nearest neighbor to a given
malware.

In this paper we propose efficient techniques for large-
scale malware triage. At the core of our work is BitShred,
a framework for data mining features extracted by exist-
ing per-sample malware analysis. BitShred uses a prob-
abilistic data structure created through feature hashing
for large-scale correlation that is agnostic to per-sample
malware analysis. BitShred then defines a fast variant of
the Jaccard similarity metric to compare malware feature
sets. We also develop a distributed version of BitShred
that is optimal: given 2x more hardware, we get 2x the
performance. After clustering, BitShred can go one step
further than previous similar work and also automati-
cally discover semantic inter-family and inter-malware
distinguishing features, based upon co-clustering tech-
niques adapted to BitShred’s fingerprints. We have im-
plemented and evaluated BitShred using two different
per-sample analysis routines: one based upon static code
reuse detection and one based upon dynamic behavior
analysis. Our evaluation show BitShred’s probabilistic
data structure and algorithms speed up typical malware
triage tasks by up to three orders of magnitude and use up
to 82x less memory, all with similar accuracy to previous
approaches.

1 Introduction
The volume of new malware, fueled by easy-to-use mal-
ware morphing engines, is growing at an exponential
pace [9]. In 2009 security vendors received upwards of
8,000 unique by hash malware samples per day [9], with
the projected total to reach over 1,000,000 per day within
the next 7 years. The sheer volume of malware means we
need automatic methods for large-scale malware triaging
to sort it by family, functionality, and other qualities. Un-
fortunately, scaling malware triage to current and future
volumes is challenging. For example, can we automat-
∗This technical report is a follow-up work of CMU-CyLab-10-006.

ically cluster 1,000,000 malware samples into families?
For each new sample, can we identify a previously ana-
lyzed sample that is most similar? Can we automatically
determine what features distinguish all members of one
malware family from another?

In principle we know how to address such questions.
At a high level, there are two steps. First, per-sample
malware analysis is run on each sample to extract a set
of features. For example, dynamic analysis may report
observed behaviors as features, while static analysis may
report common code segments. Scaling this part of the
analysis is easy, e.g., we can distribute per-malware fea-
ture extraction across many nodes. Second, we need to
be able to perform pairwise comparisons between mal-
ware feature sets. Comparisons are the core for fun-
damental malware triage solutions such as clustering to
determine malware families, finding nearest neighbors
based upon features, or determining what features may
be different between samples.

There are several requirements for an effective, scal-
able malware triage system. First, the overall approach
should be agnostic to the particular per-sample malware
analysis feature extraction in step 1. Malware authors
and defenders are caught in a cyclic battle where defend-
ers invent ever-more advanced and accurate per-malware
analyses for feature extraction, which are then defeated
by new malware obfuscation algorithms. We need com-
parison techniques that allow us to plug-in the latest or
most appropriate analysis for feature extraction. Sec-
ond, the pairwise malware comparisons (which we also
refer to as distance computations) must be extremely
fast. Clustering techniques for identifying families re-
quire s(s − 1)/2 pairwise comparisons for s samples.
While there are data reduction techniques that can some-
times reduce s before clustering (e.g., locality sensitive
hashing in § 6 is one such technique), the quadratic pair-
wise comparison bound after the reduction is fundamen-
tal [11]. To get a sense of scale, clustering 1,000,000
malware requires about 1012 comparisons. Beyond sim-
ple volume of malware, the high-dimensionality of ex-
tracted features by evermore detailed per-sample analysis
makes typical distance computations too slow to handle
current and future volumes. Current techniques do not
scale to such volumes. Third, we need techniques that are
parallelizable so that we can make full use of multi-core
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systems and distributed platforms such as Hadoop [1].
Finally, we need malware data mining techniques that
offer semantic insights such as why malware are simi-
lar or different, as well as what are the distinguishing
features. Existing data mining algorithms for malware
analysis [5, 13] act as black boxes and provide no such
semantic information.

In this paper, we propose a set of novel techniques
for addressing large-scale malware triage in a system
called BitShred. BitShred is unique in that it uses feature-
based hashing for malware clustering and semantic inter-
malware feature correlation. At a high level, BitShred
hashes the features output by the per-malware analysis
into a probabilistic data-structure called a fingerprint.
The fingerprint encapsulates even high-dimensional fea-
ture sets into a data structure that allows large-scale inter-
sample analysis to be performed cheaply. BitShred then
computes similarity between malware pairs based upon
an efficient probabilistic approximation algorithm for the
Jaccard distance. The intuition for the Jaccard is that the
degree of similarity is relative to the percentage of shared
features, e.g., malware that share most of the same fea-
tures are more similar than malware that do not. Our
algorithm well-approximates the Jaccard index for any
malware feature set, but is significantly faster.

BitShred is the first algorithm for malware triage that
meets all the above desired challenges and requirements.
First, by using feature hashing [26, 28], our approach is
agnostic to the particular per-malware analysis routine,
even when the extracted feature set has very high dimen-
sions. We show this empirically by demonstrating Bit-
Shred on two previously proposed per-sample analysis:
dynamic behavior analysis from Bayer et al. [5], and
static code reuse detection as proposed in [3, 17, 27].
Second, BitShred is over 1000 times faster than exist-
ing approaches at comparing malware, while simultane-
ously requiring less memory. Third, we develop a paral-
lel version of BitShred that is optimal in terms of inter-
node communication, currently implemented on top of
Hadoop. We show given 2x the hardware, BitShred can
scale to approximately 2x the malware.

Finally, BitShred identifies semantic information
within and between identified families based upon the
idea of co-clustering. Roughly speaking, given a clus-
tering, co-clustering determines which features led to the
conditions for creating a particular malware cluster. For
example, suppose there are two different malware fami-
lies, both of which use libc, but one family lists all files
and another deletes all files. The distinguishing feature
is not using libc, but the particular behavior of deleting
or listing files. Co-clustering would automatically deter-
mine this. Current state-of-the-art techniques would not,
and would rely on someone a priori excluding the libc
analysis. While libc is a simple example, co-clustering

does this for any set of features. As a side benefit, co-
clustering also performs a dimensionality reduction in
our feature set because all features identified as non-
informative can be removed.

Returning to our questions, given a million new mal-
ware, which malware is unique and which is a variant
of a known family? BitShred performs automatic clus-
tering which identifies malware families. In our experi-
ments we show BitShred’s probabilistic approach is up to
three orders of magnitude faster than current approaches
while enjoying similar accuracy to a deterministic, exact
clustering. Our guarantees are independent of the mal-
ware itself. The overall effect of the speedup is we can
cluster significantly more malware per day than existing
approaches.

Given a particular sample, can we identify a previ-
ously analyzed sample that is the most similar? Hu et al.
[13] proposed this as the nearest neighbor problem for
malware. BitShred is able to find nearest neighbors again
an order of magnitude faster. However, BitShred is the
first large-scale malware system that can go one step fur-
ther and provide semantic information about inter-family
and inter-sample distinguishing features. We achieve this
by developing co-clustering [8, 21] techniques based on
BitShred fingerprints.

Contributions. In summary, this paper makes the fol-
lowing contributions.

1. Higher overall throughput with the same accuracy.
A key factor in computer science is finding the right
data structure and algorithms for the job. BitShred’s
fingerprint is 68-1890 times faster than previous ap-
proaches without an appreciable loss of accuracy.

2. Proof of correctness. We prove that BitShred’s dis-
tance calculation well-approximates the Jaccard in-
dex (i.e., is within epsilon) for any feature sets (The-
orem 1). § 9 details why this is also of independent
interest.

3. Per-Malware Analysis Agnostic. Our hash-based
approach is independent of the particular per-
malware analysis engine, and works even for high-
dimensional feature sets. For example, BitShred
works on the feature space from 217 (dynamic anal-
ysis from Bayer et al. [5]) to 2128 (static code reuse
detection).

4. Parallelizable. We develop a parallelized version
of our algorithm (§ 4). The parallelized version (a)
extends single-node comparisons to a divide-and-
conquer approach, (b) is optimal in that there is
no inter-node communication needed, (c) works in
MapReduce frameworks [10].
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5. We implement our approach and perform exten-
sive experimental analysis using two different previ-
ously proposed per-sample analysis: code similarity
and dynamic behaviors.

6. We propose techniques based on co-clustering us-
ing BitShred’s fingerprints for identifying semantic
information within and between malware families.

2 BitShred Overview
At a high level, BitShred takes in a set of malware, runs
per-malware analysis, and then performs inter-malware
comparison, correlation, and feature analysis. BitShred’s
job is to facilitate fast and scalable inter-sample analy-
sis even when there is a very large feature set. BitShred
uses existing analysis to perform per-sample feature ex-
traction. For example, Karim et al. have proposed using
code fragments as features [15], where two malware are
considered similar if they share a large amount of code.
In a dynamic analysis setting, a feature corresponds to
whether a particular behavior was exhibited or not, and
malware that exhibit similar behaviors are considered
similar. We have implemented both and performed ex-
perimentation, though our techniques are more generally
applicable.

Many malware triage problems are, at core, a problem
of quick pairwise malware feature set comparisons. For
example, we can automatically identify malware fami-
lies by clustering malware based upon similarity. Dur-
ing clustering, there will be many pairwise comparisons.
For example, hierarchical clustering has a lower bound
of s(s− 1)/2 comparisons for s malware to cluster [11].
While there are data reduction techniques that reduce the
size of s, e.g., locality sensitive hashing (§ 6), we can
expect that even after data reduction the number of mal-
ware we need to cluster will continue to increase rapidly.
Another example is automatically identifying the near-
est neighbors, which requires that given a sample m we
compute its distance to all other malware. An exac-
erbating issue is that we want analysis which extracts
many features, which in turn creates extremely high-
dimensional feature sets, and this, in turn makes each
comparison more expensive.

The main idea in BitShred is to use feature hashing
to compactly represent even high-dimensional feature
sets in a bitvector. We call the bitvector the malware
fingerprint. The algorithm that calculates the malware
fingerprint using feature hashing is called BITSHRED-
GEN in Figure 1. We then replace existing exact inter-
malware feature set comparison called the Jaccard in-
dex with an approximation algorithm called BITSHRED-
COMPARE that is just as accurate (with high probability),
yet significantly faster. In particular, the main bottleneck
with the Jaccard distance computation is it requires a set

intersection and union operation with the entire feature
space. BitShred’s algorithm replaces set operations with
bitvector operations, which are orders of magnitude more
efficient.

We then perform clustering using BITSHRED-
CLUSTER to identify families. We then extend the idea
to cluster not just malware, but also to perform semantic
analysis to determine which features distinguish iden-
tified malware families with BITSHRED-SEMANTIC.
These ideas are based upon the idea of co-clustering,
where we cluster together features and malware to iden-
tify features that matter for a particular family. Why do
we do both clustering and co-clustering? Co-clustering
is more expensive because it must consider both what
features are in common between malware pairs, as well
as what features are important. Hierarchical clustering is
faster since it only needs to determine whether malware
is similar or not. Thus, we run hierarchical clustering
to identify families, and co-clustering to identify inter-
family and intra-family semantic features. For example,
in our experiments co-clustering automatically identifies
that within the Allaple malware family a distinguishing
feature is the particular IP address contacted.

3 Single Node BitShred
In this section we describe the core BitShred com-
ponents: BITSHRED-GEN, BITSHRED-COMPARE, and
BITSHRED-CLUSTER. In § 4, we show how the algo-
rithm can be parallelized, e.g., to run on top of Hadoop or
multi-core systems, and in § 5 co-clustering techniques
for identifying distinguishing features. Figure 1 shows
the overall flow between components. Throughout this
paper we use mi to denote malware sample i, G to de-
note the set of all features, and gi to denote the subset of
all features G present in mi.

BITSHRED-GEN: G → F BITSHRED-GEN is an algo-
rithm from the extracted feature set gi ∈ G to finger-
prints fi ∈ F for each malware sample mi. A BitShred
fingerprint fi is a bit-vector of length m, initially set to
0. BITSHRED-GEN performs feature hashing to represent
feature sets gi in fingerprints fi. More formally, for a par-
ticular feature set we define a has function h : χ→ 0, 1m

where the domain χ is the domain of possible features
and m is the length of the bitvector. We use djb2 [6]
and reduce the result modulo m. (As we will see in § 6,
data reduction techniques such as locality-sensitive hash-
ing [5] and Winnowing [24] can be used to pare down the
data set for which we call BITSHRED-GEN and perform
subsequent steps.)

BITSHRED-COMPARE: F × F → R BITSHRED-
COMPARE computes the similarity d ∈ [0, 1] between
fingerprints fa and fb. A similarity value of 1 means the
two samples are identical, while a similarity of 0 means
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the two samples share nothing in common (in our setting,
this means they share no features in G).

Our similarity metric is a fast variant of the Jaccard
index designed to work on bit-vectors. The intuition be-
hind the Jaccard index is that the similarity of malware is
the percentage of shared features. The Jaccard index J
of two feature sets ga and gb is defined as:

J(ga, gb) =
|ga ∩ gb|
|ga ∪ gb|

(1)

The numerator calculates the amount of shared features
between two samples ma and mb, and the denominator
is the total amount of features.

In BitShred, we approximate the Jaccard index with
a faster-to-compute approximation using bitvector arith-
metic. The Jaccard set operations are slow compared
to bitvector arithmetic because they require a duplicate
check (because sets cannot have duplicates), and because
set representations exhibit poor L1/L2 cache behavior.
BitShred calculates:

BITSHRED-COMPARE(fa, fb) =
S(fa ∧ fb)
S(fa ∨ fb)

,

where S(·) means the number of bits set to 1. While
an observant reader may notice that the BitShred finger-
print resembles a Bloom filter, we emphasize that the
BITSHRED-COMPARE operation is not a Bloom filter op-
eration. Bloom filter operations are set membership tests;
here we want to approximate a similarity metric. It turns
out that this difference means that the set of parameters
we choose is quite different, e.g., all things being equal,
BitShred’s accuracy improves with fewer hash functions,
but Bloom filters improve with more hash functions.

Formally, the following theorem states that
BITSHRED-COMPARE well-approximates the Jaccard
index.

Theorem 1. Let ga, gb denote two sets of size N with c
common elements, and fa, fb denote their respective fin-
gerprints with bit-vectors of length m and k hash func-
tions. Let Y denote S(fa∧fb)

S(fa∨fb)
. Then, for m � N ,

ε, ε2 ∈ (0, 1),

Pr[Y ≤ c(1 + ε2)
2N − c−mε

] ≥ 1−e−mqε
2
2/3−2e−2ε2m2/Nk

and

Pr[Y ≥ c(1− ε2)
(2N − c) +mε

] ≥ e−mqε
2
2/2 − 2e−2ε2m2/Nk

for q = 1− 2
(
1− 1

m

)kN +
(
1− 1

m

)k(2N−c)
.

We defer the proof of the theorem to Appendix. Note
that because the goal of feature hashing is different from
Bloom filters, our guarantees are not in terms of the false
positive rate standard for Bloom filters, but instead are
of how well our feature hashing data structure lets us ap-
proximate the Jaccard index.

BITSHRED-CLUSTER: (F × F × R list) × R → C
BITSHRED-CLUSTER takes the list containing the simi-
larity between each pair of malware samples, a thresh-
old t, and outputs a clustering C for the malware.
BITSHRED-CLUSTER groups two malware if their sim-
ilarity d is greater than or equal to t: d ≥ t. The thresh-
old t is set by the desired precision tradeoff based upon
past experience. See § 8 for our experiments for different
values of t.

BitShred currently uses an agglomerative hierarchical
clustering algorithm to produce malware clusters. Ini-
tially each malware sample mi is assigned to its own
cluster ci. The closest pair is selected and merged into
a cluster. We iterate the merging process until there is
no pair whose similarity exceeds the input threshold t.
When there are multiple samples in a cluster, we de-
fine the similarity between cluster cA and cluster cB as
the maximum similarity between all possible pairs (i.e.,
single-linkage), i.e., BITSHRED-COMPARE(cA, cB) =
max{BITSHRED-COMPARE(fi, fj)|fi ∈ cA, fj ∈ cB}.
We chose a single-linkage approach as it is efficient and
accurate in practice.

BITSHRED-SEMANTIC: C × F → G′ Based on
the BITSHRED-CLUSTER results, BITSHRED-SEMANTIC
performs co-clustering on subset of fingerprints to clus-
ter features as well as malware samples. Co-clustering
yields correlated features-malware subgroups G′ which
shows the common or distinct features among malware
samples. We discuss the co-clustering step in detail in
Section 5.
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Properties of Single Node BitShred
Accuracy. Although BITSHRED-COMPARE is probabilis-
tic, Theorem 1 proves it closely approximates the Jaccard
index. While an attacker could certainly try and manip-
ulate the per-sample analysis, an attacker cannot affect
the accuracy of BitShred’s feature hashing as long as the
hash function is either unknown or collision-resistant.

High Throughput. BITSHRED-COMPARE uses simple
bit-vector arithmetic that can be computed in constant
time. In practice, constant-sized bit-vector arithmetic is
L1/L2 cache-friendly, while typical algorithms over sets
with different sizes is not. Our performance is enhanced
significantly by this cache-friendliness as shown in Fig-
ure 3. Further, BitShred’s fixed-size fingerprint size typ-
ically leads to a smaller memory footprint, as shown in
§ 8.

4 Distributed BitShred
BitShred’s throughput, as well as any clustering algo-
rithm, is bottlenecked by how quickly fingerprints can
be compared. In addition to improved single-node per-
formance, we have developed a distributed version of
BitShred based upon Hadoop. The distributed versions
performance is designed to improve linearly with the
amount of additional hardware resources. In order to
improve linearly, we address two challenges. First, can
we design an algorithm that does not require cross-node
communication? Second, can we develop an algorithm
where no node is a bottleneck, i.e., all nodes do the same
amount of work? In this section we describe how the
BITSHRED-SCHEDULE algorithm optimally parallelizes
BitShred to achieve both goals, as well as how the paral-
lelization can be implemented in the MapReduce frame-
work.

4.1 BITSHRED-SCHEDULE

There are two things we parallelize in BitShred: finger-
print generation in Phase 1, and the s(s−1)/2 fingerprint
comparisons in Phase 2 during clustering. Parallelizing
fingerprint generation is straight-forward: given s mal-
ware samples and r resources, we assign s/r malware
to each node and run BITSHRED-GEN on each assigned
sample.

Parallelizing BITSHRED-COMPARE in a resource and
communication-efficient manner requires more thought.
There are s(s − 1)/2, and every comparison takes the
same fixed time, so if every node does s(s− 1)/2r com-
parisons all nodes do equal work.

To accomplish this we first observe that while the first
malware needs to be compared against all other malware
(i.e., s− 1 fingerprint comparisons), each of the remain-
ing malware require fewer than s− 1 comparisons each.
In particular, malware i requires only s− i comparisons,
and malware s − i requires s − (s − i) comparisons.

The main insight is to pair the comparisons for malware
i with s− i, so that the total comparisons for each pair is
s− i+ s− (s− i) = s. If we pair together the compar-
isons for malware i with s− i, the total comparisons for
each pair is s− i+ s− (s− i) = s. Thus, for each node
to do uniform work, BITSHRED-SCHEDULE ensures that
the s− i comparisons for malware i are scheduled on the
same node as the s − (s − i) comparisons for malware
s− i. BITSHRED-SCHEDULE then simply divides up the
pairs among the r nodes.

Thus, BITSHRED-SCHEDULE ensures that the compar-
isons are evenly divided among the nodes, all nodes do
equal work, and there is no inter-node communication
required. Of course there may be other protocols that
achieve these goals; we use this because it is a simple
and optimal algorithm that meets our goals.

4.2 BitShred on Hadoop
Our distributed implementation uses the Hadoop imple-
mentation of MapReduce [1, 10]. MapReduce is dis-
tributed computing technique for taking advantage of a
large computer nodes to carry out large data analysis
tasks. In MapReduce, functions are defined with re-
spect to 〈key,value〉 pairs. MapReduce takes a list of
〈key,value〉 pairs, and returns a list of values. MapRe-
duce is implemented by defining two functions:

1. MAP: 〈Ki, Vi〉 → 〈Ko, Vo〉 list. In the MAP step
the master Hadoop node takes the input pair of type
〈Ki, Vi〉 and partitions into a list of independent
chunks of work. Each chunk of work is then dis-
tributed to a node, which may in turn apply MAP to
further delegate or partition the set of work to com-
plete. The process of mapping forms a multi-level
tree structure where leaf nodes are individual units
of work, each of which can be completed in paral-
lel. When a unit of work is completed by a node,
the output 〈Ko, Vo〉 is passed to REDUCE.

2. REDUCE: 〈Ko, Vo〉 list → Vf list. In the REDUCE
step the list of answers from the partitioned work
units are combined and assembled to a list of an-
swers of type Vf .

We also take advantage of the Hadoop distributed file
system (HDFS) to share common data among nodes. We
also use DistributedCache feature to copy the necessary
(read-only) files to the nodes prior to executing a job.
This allows nodes to work from a local cached copy of
data instead of continually fetching items over the net-
work.

In phase 1, distributed BitShred produces fingerprints
using Hadoop by defining the following MapReduce
functions:

1. MAP: 〈Ki,mi〉 list→ 〈Ki, fi〉 list. Each MAP task
is assigned the subset of malware samples mi and

5



creates fingerprints fi to be stored on HDFS. Fin-
gerprint files are named as Ki representing the in-
dex to the corresponding malware samples.

2. REDUCE. In this step, no REDUCE step is needed.

In phase 2, distributed BitShred runs BITSHRED-
COMPARE across all Hadoop nodes by defining the fol-
lowing functions:

1. MAP: 〈Ki, fi〉 list→ 〈R, (ma,mb)〉 list MAP tasks
read fingerprint data files created during phase 1 and
runs BITSHRED-COMPARE on each fingerprint pair,
outputting the similarity d ∈ R.

2. REDUCE: 〈R, (ma,mb)〉 list →
sorted 〈R, (ma,mb)〉 list REDUCE gathers the
list of the similarity values for each pair and returns
a sorted list of pairs based upon similarity.

This phase returns a sorted list of malware pairs by
similarity using standard Hadoop sorting. The sorted list
is essentially the agglomerative single linkage clustering.
In particular, malwaremi’s family is defined as the set of
malware whose distance is less than θ, thus all malware
in the sorted list with similarity > θ are in the cluster.

5 Co-clustering in BitShred
A BitShred fingerprint is a m-length bitvector where the
intuition is a bit i is 1 if the particular malware sam-
ple has a feature gi, and 0 otherwise. Given n malware
samples, the m-sized list of BitShred fingerprints can be
viewed as a matrix M of size n × m where each row
is a malware fingerprint, and each column is a particular
feature. This intuition leads us to the idea of using co-
clustering (aka bi-clustering) to auto-correlate both fea-
tures and malware simultaneously. Within the matrix,
co-clustering does this by creating sub-matrices among
columns (features) and rows (malware) where each sub-
matrix is a highly correlated malware/feature pair.

Co-clustering allows us to discover substantial, non-
trivial structural relationships between malware samples,
many of which will not be discovered with simpler ap-
proaches. For example, consider how the following sim-
ple approaches for mining features between two malware
families would be limited:

• Identify all common features between families.
In BitShred, this is accomplished by taking the
bitwise-and (∧) of the malware fingerprints. How-
ever, we would miss identifying code that is present
in 99% of family 1 and 99% of family 2.

• Identify all distinctive features in a list of malware.
In our setting, this is accomplished with bitwise xor
(⊕) of the fingerprints. This would have limited
value for the same reasons as above.

• A third approach might be to cluster features either
before or after the malware fingerprints have been
clustered. Note, however, this approach too would
also result in misleading information, e.g., clus-
tering features after the clustering malware finger-
prints would not reveal structural similarity across
fingerprints in different families, and clustering fea-
tures before the malware fingerprints may result
in poor malware clusters if there are many feature
clusters that are common to multiple groups of mal-
ware fingerprint clusters.

We introduce some terminology to make co-clustering
precise. A matrix is homogeneous if the entries of the
matrix are similar, e.g., they are mostly 0 or mostly 1,
and define the homogeneity of a matrix to be the (larger)
fraction of entries that have the same value. Define a
row-cluster to be a subset of the rows M (i.e., malware
samples) that are grouped together, and a column-cluster
to be a subset of the columns (i.e., the features) that are
grouped together. The goal of co-clustering is to create a
pair of row and column labeling vectors:

r ∈ {1, 2, ..., k}n and c ∈ {1, 2, ..., `}m

The sub-matrices created are homogeneous, rectangu-
lar regions. The number of rectangular regions is either
given as input to the algorithm, or determined by the al-
gorithm with a penalty function that trades off between
the number of rectangles and the homogeneity achieved
by these rectangles 1.

For example, Figure 2 shows a list of 5 malware Bit-
Shred fingerprints where there are 5 possible features.
The result is the 5×5 matrix M . Co-clustering automat-
ically identifies the clustering to produce sub-matrices,
as shown by the checkerboard M ′. The sub-matrices
are homogeneous, indicating highly-correlated feature/-
malware pairs. In this case the labeling vectors are
r = (12122)T and c = (21121)T . These vectors say that
row 1 in M mapped to row cluster 1 (above the horizon-
tal bar) in M’, row 2 mapped to row cluster 2 (below the
horizontal bar), etc., and similar for the column vectors
for features. We can reach two clustering conclusions.
First, the row clusters indicate malware m1 and m3 are
in one family, and m2, m4, and m5 are in another fam-
ily. The column clusters say the distinguishing features
between the two families are features 2, 3, and 5.

5.1 Co-clustering Algorithm in Bitshred
We have adapted the cross-associations algorithm [8] re-
designed for the Map-Reduce framework [21] to Bit-
Shred fingerprints. The basic steps are row iterations and

1The goal is to make the minimum number of rectangles which
achieve the maximum homogeneity. For this reason, co-clustering al-
gorithms ensure that homogeneity of the rectangles is penalized by the
number of rectangles if they need to automatically determine k and `.
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Figure 2: M is co-clustered to identify the checker-
board sub-matrix M′ of highly correlated malware/fea-
ture pairs.

column iterations. A row iteration fixes a current column
group and iterates over each row, updating r to find the
“best” grouping. In our algorithm, we seek to swap each
row to a row group that would maximize homogeneity of
the resulting rectangles. The column iteration is similar,
where rows are fixed. The algorithm performs a local op-
timal search (finding a globally optimal co-clustering is
NP-hard [21]).

Unlike typical co-clustering problems, co-clustering
in BitShred needs to operate on hashed features, i.e., re-
call that our fingerprints are not the features themselves,
but hashes of these features. However, because our fea-
ture hashing is designed to approximately preserve struc-
tural similarities and differences between malware sam-
ples, we can apply co-clustering on our hashed features
(just as if they were regular features) and still extract
the structural relationships between the malware sam-
ples, and with the increased computational efficiency that
comes from feature hashing. To our knowledge, our re-
sults are the first to demonstrate that if co-clustering al-
gorithms can be combined with the appropriate feature
hashing functions, they can still extract the underlying
structure of the data accurately.

6 Practical Data Reduction Tech-
niques

In this paper so far we have explored techniques that
provide an exact ranking between all pairs of malware.
For example, we must compute the distance between all
pairs since if we omitted a pair we would not know how
they relate, and the overall result would be approximate.
Nonetheless, malware practitioners are constantly facing
hard choices on how much time to spend given finite
computing resources, thus may want faster but approx-
imate over theoretically correct but slower clustering.

In practice there are two ways to reduce complexity
in order to increase speed at potentially the cost of some
precision. First, one can omit some pairwise compar-
isons of malware sample. Removing pairs reduces the
value of s for the ≈ s2 comparisons during clustering.
Second, one could remove some malware features so that
each comparison is faster. Doing so makes each pairwise

comparison faster. We have explored both data reduction
techniques in BitShred.

One practical way to reduce the number of compar-
isons is to partition the malware data set, and then com-
pute the clustering among the partitions. Suppose we are
given s samples, and we can partition it into t groups.
We then compute t independent clusterings, one for each
partition. Assume for simplicity that each partition is ap-
proximately the same s/t size, then the total number of
comparisons is ≈ t · ( st )

2 vs. ≈ s2 without partitioning.
The overall speedup is: s2/(t( st )

2) = t. For example,
if we partition the malware into 4 groups, we get a fac-
tor of 4 speedup. There are a number of ways to perform
the rough partitioning, e.g., using locality-sensitive hash-
ing [5], running k-means first with some small k value,
etc.

We note that another complementary way to reduce
the number of comparisons is to prune near duplicates
from the data set first. Bayer et al. propose a technique
to do this based upon locality sensitive hashing (LSH)
(this should not be confused with feature hashing) [5].
In LSH, we compute a hash function lsh(mi) for all s
malware, and throw away duplicates. The hash function
is designed so that if mi is “close” to mj , lsh(mi) =
lsh(mj). The result is some set of malware s′ ≤ s of
unique-by-hash malware which is then passed to stan-
dard hierarchical clustering.

Directly reducing the number of features has tradition-
ally been more tricky and required one to think about
what features matter a priori. For example, suppose
we use the amount of code shared as a similarity met-
ric [24, 27]. Let w be a window of code measured in
some way, e.g., w statements, w consecutive n-grams,
etc. Schleimer et al. propose a winnowing algorithm
(which is a type of fuzzy hashing) that guarantees that
at least one shared unit of code will in any window of
length at least w + n − 1 will be included in the fea-
ture set [24]. The result is we select a factor of w fewer
features, which in turn means that each feature set com-
parison is much more efficient.

We can also perform both feature reduction and mal-
ware reduction simultaneously, to get even more substan-
tial data reduction for the clustering. This insight has
led us to perform a rough co-clustering to identify rough
malware family partitioning, along with the feature set
for that family. For example, in our experiments we co-
cluster into 7 partitions, and then perform full hierarchi-
cal clustering on all of those individual partitions, we get
a 7x speedup in comparison to clustering over the entire
malware dataset. We have also implemented Winnow-
ing, and found it gives us a 2x speedup. Although there
is no guarantee that the results will be optimal compared
to an exact clustering, we have performed empirical mea-
surements that show we get the speedup with a negligible
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loss of accuracy.

7 Implementation
We have implemented single-node BitShred in 2K lines
of C code. Since BitShred is agnostic to the particu-
lar per-malware analysis methods, we only need indi-
vidualized routines for extracting raw input features, be-
fore converting into fingerprints. In case of static code
analysis, BitShred divides executable code section iden-
tified by GNU BFD library into n-grams and hashes each
n-gram to create fingerprints. For dynamic behavior
analysis, BitShred simply parses input behavior profile
logs and hashes every behavior profile to generate fin-
gerprints. We use berkeley DB to store and manage
fingerprints database. After building the database, Bit-
Shred retrieves fingerprints from the database to calcu-
late the Jaccard similarity between fingerprints. After
applying an agglomerative hierarchical clustering algo-
rithm, malware families are formed. We use graphviz
and Cluto [16] for visualizing the clustering and family
trees generated as shown in Figure 7, 8.

Distributed BitShred is implemented in 500 lines of
Java code. We implemented a parser for extracting sec-
tion information from Portable Executable header infor-
mation because there is no BFD library for Java. In our
implementation, we perform a further optimization that
groups several fingerprints into a single HDFS disk block
in order to optimize I/O. In the Hadoop infrastructure
we use, the HDFS block size is 64MB. We optimize for
this block size by dividing the input malware set so each
node works on 2,048 malware samples at a time because
64MB = 32KB × 2048. That is, each MAP task is given
2,048 samples (mi,mi+1, · · ·mi+2047) and generates a
single file containing all fingerprints. We can similarly
optimize for other block sizes and different bit-vector
lengths, e.g, 64KB bit vectors result in batching 1,024
malware samples per node.

8 Evaluation
We have evaluated BitShred for speed and accuracy us-
ing two types of per-sample analysis for features. First,
we use a static code reuse detection approach where fea-
tures are code fragments, and two malware are consid-
ered similar if they share common code fragments. Sec-
ond, we use a dynamic analysis feature set where features
are displayed behaviors, and two malware are considered
similar if they have exhibit similar behaviors. Note that
similarity is a set comparison, so order does not matter
(e.g., re-ordering basic blocks is unlikely to affect the re-
sults). We stress that we are not advocating a particular
approach such as static or dynamic analysis, but instead
demonstrating how BitShred could be used once an anal-
ysis was selected.

Equipment All single-node experiments were per-
formed on a Linux 2.6.32-23 machine (Intel Core2 6600
/ 4GB memory) using only a single core. The dis-
tributed experiments were performed on a Hadoop using
64 worker nodes, each with 8 cores, 16 GB DRAM, 4
1TB disks and 10GbE connectivity between nodes [2].
53 nodes had a 2.83GhZ E5440 processor, and 11 had a
3GhZ E5450 processor. Each node is configured to allow
up to 6 map tasks and up to 4 reduce tasks at one time.

8.1 BitShred With Code Reuse as Features
Setup Our static experiments are based upon reports that
malware authors reuse code as they invent new malware
samples [3, 17, 27]. Since malware is traditionally a
binary-level analysis, not a source analysis, our imple-
mentation uses n-grams to represent binary code frag-
ments. Malware similarity is determined by the percent-
age of n-grams shared.

We chose n-grams based analysis because it is one
previously proposed approach that demonstrates a high
dimensionality feature space. We set n = 16, so there
are 2128 possible n-gram features. We chose 16 based
upon experiments that show it would cover at least a few
instructions (not shown for space reasons). Using other
features such as basic blocks, etc. are all possible by
first building the appropriate feature and then defining a
hash function on it; all possible extensions of the per-
sample analysis is out of scope for this work. Surpris-
ingly, even this simple analysis had over 90% accuracy
when the malware is unpacked. Pragmatically, n-gram
analysis also has the advantage of not require disassem-
bling, building a control flow graph, etc., all of which are
known hard problems on malware.
Single Node Performance Table 1 shows BitShred’s
performance using a single node in terms of speed, mem-
ory consumed, and the resulting error rate. We lim-
ited our experiment to clustering 1,000 malware samples
(which requires 499,500 pairwise comparisons) in order
to keep the exact Jaccard time reasonable. The “exact
Jaccard” row shows the overall performance when com-
puting the set operations as shown in Equation 1. Clus-
tering using Jaccard took about 9.5 hours, and required
644.13MB of memory. This works out to about 15 mal-
ware comparisons/sec and 1,593 malware clustered per
day.

We performed two performance measurements with
BitShred: one with 32KB fingerprints and one with
64KB fingerprints. With 64KB fingerprints, BitShred ran
about 303 times faster than with exact Jaccard. With
32KB fingerprints, BitShred runs about 2 times faster
compared to 64KB fingerprints, and about 577 times
faster than exact Jaccard.

Since BitShred is a probabilistic data structure created
through feature hashing, hash collisions may impact the
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Size of
fingerprints

Time to com-
pare between
every pair

Average error
on all pairs

Average error
on similar
(> 0.5) pairs

Malware
comparisons
per second

Malware
clustered
per day

EXACT JACCARD 644.13MB 9h 26m 59s - - 15 1,593

BS64K 62.50MB 1m 50s 0.0199 0.0017 4,541 28,012

BS32K 31.25MB 58s 0.0403 0.0050 8,657 38,677

WINNOW (W4) 66.97MB 41m 5s 0.0019 0.0109 203 5,918

WINNOW (W12) 30.16MB 20m 35s 0.0081 0.0128 404 8,360

BS32K (W4) 31.25MB 58s 0.0159 0.0009 8,657 38,677

BS32K (W12) 31.25MB 58s 0.0062 0.0039 8,657 38,677

BS8K (W4) 7.81MB 18s 0.0649 0.0086 27,750 69,247

BS8K (W12) 7.81MB 18s 0.0247 0.0016 27,750 69,247

Table 1: BitShred (BS) vs. Jaccard vs. Winnowing. We show BitShred with several different fingerprint sizes.
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Figure 3: Overall malware cluster-per-day capabilities.
We also report relative L1/L2 cache misses.

accuracy of the distance computations. The overall er-
ror rate in the distance computations is a function of the
fingerprint length, the size of the feature space, and the
percentage of code that is similar. The statement in The-
orem 1 formally expresses this tradeoff. We also made
two empirical measurements. First, we computed the av-
erage error on all pairs, which worked out to be about 2%
with 64KB fingerprints and 4% with 32KB fingerprints.
The error goes up as the fingerprint size shrinks because
there is a higher chance of collisions. We also computed
the average error on pairs with a similarity of at least
50%, and found the error to be less than 1% of the true
Jaccard. Note that the second metric (i.e., average error
on pairs with higher similarity), is the more important
metric – these are the numbers with the most impact on
the accuracy, as these are the numbers that will primarily
decide which family a malware sample belongs to. Thus,
BitShred is a very close approximation indeed.

We also applied the data reduction techniques de-

scribed in Section 6. Winnowing is especially relevant
because it is guaranteed to be within 33% of an upper
bound on performance algorithm [24], and is currently
the fastest from a theoretic sense we are aware of.2 We
compare two settings: BitShred vs. Winnowing as in pre-
vious work, and BitShred extended to include Winnow-
ing. Table 1 also shows these results for window sizes 4
and 12.

BitShred beats straight Winnowing. BitShred is any-
where from 11-43 times faster, while requiring less mem-
ory. Winnowing does have a slightly better error rate,
though none of the error rates is very high. A more in-
teresting case is to consider pre-processing the feature
set with Winnowing and then applying BitShred. With
Winnowing applied, we can reduce the BitShred finger-
print size down to 8K, allowing all 1,000 samples to be
clustered in 18 seconds.

Figure 3 relates all experiments with respect to the to-
tal number of malware clustered per day. Recall there are
about 8,000 new malware found per day. BitShred deals
easily with current volumes, and has room to spare for
future growth. Figure 3 also shows on the right-hand y-
axis one reason BitShred is faster. Recall we mentioned
exact Jaccard computations are slow in part because they
uses set operations. These, in turn, are not efficient on
real architectures. BitShred’s bitvector fingerprints, on
the other hand, are L1/L2 cache friendly.
Distributed BitShred We have implemented the
Hadoop version of BitShred, and performed several ex-
periments to measure overall scalability and throughput.
We use up to 655,360 samples in this experiment. Note
all samples were unpacked as the goal of this experiment
is to measure overall performance and not accuracy.

Figure 4 shows the BITSHRED-GEN fingerprint gen-
eration time. In this experiment, we utilized 80 map

2Winnowing is perhaps better known as the Moss plagiarism detec-
tion tool.
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Figure 4: Performance of Distributed BitShred (Creating
Fingerprints)

tasks for small datasets (20,480 ∼ 81,920) and 320 map
tasks for large datasets (163,840 ∼ 655,360). The to-
tal time to create fingerprints for all samples was 5m
45s with BS8K (W12) and 4m 40s with BS32K (W1).
The graph also shows a linear trend in the fingerprint
generation time, e.g., halving the total number of sam-
ples to 327,680 samples approximately halves the gen-
eration time to about 2m 54s and 2m 25s, respec-
tively. BITSHRED-GEN performance slightly dropped at
163,840 samples because the startup and shutdown over-
head of each map dominates the benefit of utilizing more
maps.

Figure 5 shows the amount of time for computing the
pairwise distance for the same sample set. We utilized
200 map tasks for small datasets and 320 map tasks
for large datasets. Given the values in the graph, we
can work out the number of comparisons per second.
For example, 163,840 samples requires approximately
1.3× 1010 comparisons, and takes 26m 41s with BS8K
(W12), which works out to 8,383,317 comparisons/sec-
ond. 327,680 samples requires about 5.4×1010 compar-
isons, and takes 1h 46m 25s with BS8K (W12), which
works out to a similar 8,408,289 comparisons/sec.

Overall, the distributed version achieved a pairwise
comparison throughput of about 7.2 × 1011 per second.
This works out to clustering about 1,205,000 malware
clustered per day.
Data Reduction In addition to experimenting with Win-
nowing as a feature reduction technique, we also experi-
mented with using the co-clustering data reduction tech-
nique from § 6. We performed the rough partitioning
by running the co-clustering algorithm for 10 iterations
on the 131,072 samples. The result was 7 partitions, for
which we then measured the total number of compar-
isons for performing hierarchical clustering. The result-
ing number of comparisons dropped by 80% overall.
Triage Tasks Three common triage tasks are to auto-
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Figure 5: Performance of Distributed BitShred (Compar-
ing Fingerprints)

matically identify malware families via clustering [5],
to identify the nearest neighbors to a particular malware
sample, and to visualize malware by creating phyloge-
netic trees [15]. In this experiment we explore using Bit-
Shred for both using n-grams as the extracted features.
While we stress that we are not advocating n-gram anal-
ysis, we also note it is interesting to see what the actual
quality would be in such a system. We repeat these anal-
ysis in Section 8.2 using dynamic behavior features.
Clustering. We refer to how close a particular cluster-
ing is to the “correct” clustering with respect to labeled
data set as the quality of a clustering. Overall quality
will heavily depend upon the feature extraction tool (e.g.,
static or dynamic), the particular data set (e.g., because
malware analysis often relies upon undecidable ques-
tions), and the quality of the reference data set.

The overall clustering quality is measured with respect
to two metrics: precision and recall. Precision measures
how well malware in separate families are put in different
clusters, and recall measures how well malware within
the same family are put into the same cluster. Formally,
precision and recall are defined as:

Precision = 1
s

∑c
i=1 max(|Ci ∩R1|, ..., |Ci ∩Rr|)

Recall = 1
s

∑r
i=1 max(|C1 ∩Ri|, ..., |Cn ∩Ri|)

We unpacked 131,072 malware samples using off-the-
shelf unpackers. We then clustered the malware based
upon n-grams and compared the identified families to
a reference clustering using ClamAV labels. Figure 6
shows the overall results with BitShred with Winnow-
ing (BS32K (W12) where the window size is 12). Sur-
prisingly, simple n-gram analysis did quite well. When
t = 0.57, BS32K (W12) clustering produced 7,073
clusters with a precision of 0.942 and a recall of 0.922.
It took less than 1.5 hour with 256 map tasks.
Nearest Neighbor. Hu et al. describe finding the near-
est k-neighbors to a given sample as a common triage
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Figure 6: Precision and Recall.

Figure 7: Clustering graph when t = 0.85

task [13]. We have implemented similar functionality in
BitShred by comparing the given malware to all other
malware. We performed experiments finding the 5 near-
est neighbors to randomly chosen malware samples on
the 102,391 malware data set. We achieved the same
94.2% precison and 92.2% recall as above. The average
time to find the neighbors was 6.8s (w/ BS8K) and 27s
(w/ BS32K), using 25MB memory, with variance always
under 1s.
Visualization. We also have implemented several ways
to visualize clustering within BitShred. First, we can
create boxed malware graphs where each square repre-
sents a malware family, with circles representing indi-
vidual samples. Figure 7 shows a clustering of 9,404
malware samples when t = 0.85. 3 In the figure we can
see one large family with many malware in the center,
with the size of the family decreasing as we move to the

3We pick 9,404 samples because larger numbers created graphs that
hung our, and potentially the reviewers’, PDF reader.
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files

edges. At the very edge are malware samples that cluster
with no family.

Another way to visualize the results using BitShred is
to create phylogenetic family trees based upon similar-
ity [15]. The more alike two malware samples are, the
closer they are on the tree. Figure 8 depicts an exam-
ple tree created from our data set, labeled with ClamAV
nodes. It is interesting to note ClamAV labels the mal-
ware as coming from three families: Spy, Dropper, and
Ardamax. We manually confirmed that indeed all three
were extremely similar and should be considered of the
same family, e.g., Trojan.Ardamax-305 and Trojan.Spy-
42659 are in different ClamAV families, but only differ
in 1 byte.

8.2 BitShred with Dynamic Behaviors as
Features

Static analysis may be fooled by advanced obfuscation
techniques, which has led researchers to propose a va-
riety of dynamic behavior-based malware analysis ap-
proaches, e.g., [4, 5, 19, 20, 23, 25]. One popular vari-
ant of this approach is to load the malware into a clean
virtual machine. The VM is started, and observed be-
haviors such as system calls, conditional checks, etc. are
recorded as features.

We have performed experiments using BitShred for
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clustering using 2658 dynamic profiles available from
Bayer et al. [5]. These are the same samples used to
measure accuracy in that paper. In this data set, each be-
havior profile is a list of feature index numbers. The total
number of features was 172260, which is relatively small
compared to static analysis. In our experiments, we used
only a 1K fingerprint size since the number of features
was relatively small.

An exact clustering took 16s and 86MB of memory us-
ing code from Bayer et al. . BitShred took 8s (2x as fast)
and used 12MB of memory ( 7x less memory). The av-
erage error was 2% using the 1KB fingerprint. Figure 9
depicts the exact clustering vs BitShred as a function of
precision and recall. Both had the same precision of .99
and recall of .98 when t = .61. Overall, BitShred is
faster and uses less memory, while not sacrificing accu-
racy for dynamic analysis feature sets.

8.3 Semantic Feature Information
Finally, we used the co-clustering phase in BitShred
to identify semantic distinguishing features among mal-
ware families. We performed a variety of experiments.
Overall, we found that co-clustering automatically iden-
tified both inter-family and intra-family semantic fea-
tures. Typical identified features included distinguishing
register keys set and internet hosts contacted.

Co-clustering of Behavior-Based Profiles We per-
formed a full co-clustering on the entire dynamic anal-
ysis data set from § 8.2. Figure 10a depicts the mal-
ware/feature matrix before co-clustering. We then co-
clustered, which took 15 minutes.

Figure 10b shows the complete results. The checker-
board pattern corresponds to the sub-matrices identified
as being homogeneous, i.e., corresponding malware/fea-
ture pairs that are highly correlated. For example, the
large dark sub-matrix labeled g8 corresponds to the fact
that most malware had the same memory-mapped files
including WS2HELP.dll, icmp.dll, and ws2 32.dll. The
sub-matrix g9 shows a commonality between two fam-
ilies, but no others. The commonality corresponds to
opening the file \Device\KsecDD.

Figure 10c focuses on only the 717 samples in
the Allaple malware family. One semantic fea-
ture, labeled g3, is that almost all samples use
the same memory-mapped files such as winrnr.dll,
WS2HELP.dll, icmp.dll, and ws2 32.dll. More im-
portantly, we also found that many family members
were distinguished by the register entry they create (e.g.,
HKLM\SOFTWARE\CLASSES\CLSID\{7BDAB28A-
B77E-2A87-868A-C8DD2D3C52D3} in one sample)
and the IP address they connect to, e.g., one sample
connected to 24.249.139.x while another connected to
24.249.150.y (shown as g4).

(a) A typical matrix before co-clustering.

g8

g9

(b) Inter-family analysis based upon dynamic behavior profile

g3

g4

(c) Intra-family analysis based upon dynamic behavior profile

g1 g2

(d) Intra-family analysis based upon static code analysis

g5

g6 g7

(e) Inter-family analysis based upon static code analysis

Figure 10: Feature extraction by co-clustering. Grey dots
represent 1 in the binary matrix, i.e., the presence of a
feature.
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Co-clustering of n-gram features We also experi-
mented with co-clustering using the n-gram features.
Figure 10d shows intra-family co-clustering for the Tro-
jan.OnlineGames malware family. The features labeled
g2 correspond to all code from the code entry to a partic-
ular point that overlap. The feature set g1 corresponds to
new functionality in a few variants that makes tcp con-
nections to a new host not found in previous variants.

We also performed inter-family analysis. In this
set of experiments we envision that an analyst uses
co-clustering to mine differences and similarities be-
tween malware family members or between malware
families. We picked the Trojan.Dropper, Trojan.Spy,
Trojan.OnlineGames, and Adware.Downloader families,
which have 1280 total members. Total co-clustering time
was 10 minutes (about 2s per sample), with about 1
minute for each column and row iteration. We used 10
maps for each row iteration and 64 maps for column it-
eration.

Figure 10e shows the resulting co-clustering. Tro-
jan.Dropper and Trojan.Spy were grouped together by
co-clustering. This is accurate: we manually con-
firmed that the samples we have from those fami-
lies are not well-distinguished. The submatrix labeled
g5 is one distinguishing feature corresponding to Ad-
ware.Downloader connecting to a particular host on
the internet. The submatrix labeled g6 corresponds to
data section fragments shared between the Trojan fam-
ily, but not present in Adware. The submatrix la-
beled g7 corresponds to shared code for comparing
memory locations. This code is shared between Ad-
ware.Downloader and Trojan.OnlineGames, but not Tro-
jan.Spy/Trojan.Downloader.

9 Discussion
Containment. BITSHRED-COMPARE measures the
proportional similarity between features. However,
we may want to also measure when one feature set is
contained within another, e.g., whether one malware is
completely contained in another code. For example,
suppose malware A is the composition of two malware
samples B and C, and suppose |B| � |C|. Then the
similarity between A and C will be proportionally very
low. An alternative similarity metric for this case can be
given as:

BITSHRED-COMPAREc(fa, fb) =
S(fa ∧ fb)
S(fb)

,

when fi is the fingerprint for malware mi and |ma| �
|mb|.
Additional applications. There are a number of other
security applications for automatic binary code reuse de-
tection. For example, BitShred can be used for plagia-
rism detection, similar to MOSS [24]. An immediate ap-

plication is to find copyright violations, e.g., compile all
GPL libraries and then use BitShred to check for GPL
violations, as done in [12]. We leave exploring these
scenarios as future work.

10 Related Work
We are not the first to propose the need for large-scale
malware analysis and triage. Two recent examples are
Hu et al. [13] and Bayer et al. [5]. BitShred’s hash-
based approach works well when the feature set is fixed,
as shown in § 8 with Bayers dynamic analysis approach.
Hu et al. use a different metric based upon the NP-
complete problem of determining function call graph
similarity. While we can compute call graph similarity
based upon features, e.g., how many basic blocks are in
common, our approach cannot readily be adapted to ac-
tually computing the isomorphism. Hu et al. argue that
although graph-based isomorphism is expensive, it is less
susceptible to being fooled by polymorphism. In Hu et
al. ’s implementation they return the 5 nearest neighbors,
and achieve an 80% success rate in having 1 of the 5
within the same family on a data set of 102,391 samples
(Section 6.3 in [13]). The query time was between 0.015s
to 872s, with an average of 21s using 100MB of mem-
ory. We did not have access to their data set; results for
our data set for finding nearest neighbors are reported in
§ 8.1.

Bayer et al. [5] use dynamic analysis, which is less
vulnerable to some kinds of obfuscation, such as pack-
ing. They also perform locality sensitive hashing (LSH)
on the features extracted by the analysis to reduce the
number of comparisons. However, the O(n2) compar-
isons that may be required between the samples, together
with variable-length feature representations, make their
approach less scalable for large-scale malware analysis.

Li et al. [18] argue it is difficult to get ground truth
for clustering accuracy. Our goal is different than ad-
dressed in that paper since our goal is to find a right data
structure compactly representing even high-dimensional
feature sets and to calculate similarity significantly fast,
precisely. We stress that detecting non-trivial similarities
between programs is equivalent to deciding whether two
programs have a shared non-trivial property, thus unde-
cidable in the general case. As a result, any automatic
malware classification or clustering scheme is going to
be a best effort.

Clustering, classification, and lineage tree generation
have been studied in other work. BitShred fingerprints
are motivated by using Bloom filters to difference sets
(see [7]), but previous work has not shown that it can be
used as an approximation for Jaccard like here. Kolter
and Maloof [17] suggested a classification method based
upon 4-grams. Karim et al. [15] proposed a malware
phylogeny generation technique using n-perms to match
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every possible permuted code. Perdisci et al. [22] pre-
sented a classification method between packed and non-
packed PE files exploiting PE header information. Bailey
et al. [4] proposed behavior-based malware classifica-
tion and clustering technique. They define the behavior
of malware in terms of system state changes, i.e., ab-
straction of system calls, and use normalized compress
distance as a distance metric.

11 Conclusion
In this paper we have presented BitShred, a new approach
to large-scale malware triage and similarity detection.
At the core of BitShred is a probabilistic data structure
based upon feature hashing. Our approach make inter-
malware comparisons in typical large-scale triage tasks
such as clustering and finding nearest neighbors up to
three orders of magnitude faster than existing methods.
As a result, BitShred scales to current and future malware
volumes where previous approaches do not. We have
also developed a distributed version of BitShred where
2x the hardware gives 2x the performance. In our tests,
we show we can scale to up to clustering over 1,000,000
malware per day. In addition, we have develop novel
techniques based upon co-clustering to extract seman-
tic features between malware samples and families. The
extracted features provide insight into the fundamental
differences and similarities between and within malware
data sets.
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Our analysis shows that with high probability, the Jac-
card index |gi∩gj |

|gi∪gj | is well approximated by the S(fi∧fj)
S(fi∨fj)

,
where fi and fj are the fingerprints of gi and gj .
Throughout this analysis, we let c denote the number of
shared elements between sets gi and gj ; note that the
Jaccard index |gi∩gj |

|gi∪gj | is then c
2N−c . The focus of our
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analysis is to show that the ratio S(fi∧fj)
S(fi∨fj)

is close to
c

2N−c with high probability (unlike other analyses [14]
that restrict their focus to computing the expected value
of S(fi ∧ fj)). We make the usual assumption that the
hash functions used are k-wise independent.

We first consider the union gi ∪ gj . We note that the
bloom filter obtained by computing the bitwise-or of the
two fingerprints fi and fj is equivalent to the bloom fil-
ter that would be obtained by directly inserting all the
elements in gi∪ gj , if the same k hash functions are used
on a bloom filter of the same size.

Let the random variable U denote the number of bits
set to 1 in fi∨fj . Note that the set gi∪gj contains 2N−c
elements. If these elements are inserted into a bloom
filter of size m with k hash functions, the probability qu
that a bit is set to 1 is: 1−

(
1− 1

m

)k(2N−c)
. We can use

this to compute the expected value of U :

E[U ] = mqu = m

(
1−

(
1− 1

m

)k(2N−c))
(2)

AsU is tightly concentrated around its expectation [7],
we get:

Pr[|U−E[U ]| ≥ εm] ≤ 2e−2ε2m2/(2N−c)k ≤ 2e−2ε2m2/Nk.

Next, we consider the intersection gi ∩ gj . Let the
random variable I denote the number of bits set to 1 in
fi ∧ fj . A bit z is set in fi ∧ fj in one of two ways: (1) it
may be set by some element in gi∩gj , or (2) it may be set
by some element in gi − (gi ∩ gj) and by some element
gj− (gi∩gj). Let Iz denote the indicator variable for bit
z in fi ∧ fj . Then,

Pr[Iz = 1] =

(
1−

(
1− 1

m

)kc)
+

(
1− 1

m

)kc(
1−

(
1− 1

m

)k(|gi|−c)
)

·

(
1−

(
1− 1

m

)k(|gj |−c)
)

which may be simplified as:

1−
(

1− 1
m

)kN
−
(

1− 1
m

)kN
+
(

1− 1
m

)k(2N−c)
.

With linearity of expectation, we can compute E[I] as∑
z Pr[Iz = 1], which reduces to:

E[I] = m

(
1− 2

(
1− 1

m

)kN
+
(

1− 1
m

)k(2N−c))
.

(3)

Note that the random variables I1, I2 . . . Im are neg-
atively dependent, and so we can apply Chernoff-
Hoeffding bounds to compute the probability that I devi-
ates significantly fromE[I]: e.g., Pr[I ≥ E[I](1+ε2) ≤
e−mqε

2
2/3, where q = 1 −

(
1− 1

m

)kN − (1− 1
m

)kN +(
1− 1

m

)k(2N−c)
.

We now turn to the ratio S(fi∧fj)
S(fi∨fj)

; let the random vari-
able Y denote this ratio. We have just shown that U and
I are both likely to remain close to their expected values,
and we can use this to compute upper and lower bounds
on Y – since U and I lie within an additive or multiplica-
tive factor of their expectations with probability at least
1 − 2e−mqε

2
2/3 and 1 − 2e−2ε2m2/Nk respectively, we

can derive upper and lower bounds on Y that hold with
probability at least 1− 2e−mqε

2
2/3 − 2e−2ε2m2/Nk.

To do this, we first simplify the quantities E[U ] and
E[I]. Assuming that m � 2kN , we can approximate
E[U ] and E[I] by discarding the higher-order terms in
each of binomials in 2 and 3:

E[U ] ≥ m

(
1−

(
1− k(2N − c)

m

))
= mk

(
2N − c
m

)
= k(2N − c).

Likewise, we can approximate E[I] as:

E[I] ≤ m

(
1− 2

(
1− kN

m

)
+
(

1− k(2N − c)
m

))
= mk

( c
m

)
= ck.

Using these approximations for E[I] & E[U ], we
see that Y ≤ c(1+ε2)

2N−c−mε , with probability at least 1 −
e−mqε

2
2/3 − 2e−2ε2m2/Nk. We can compute a similar

lower bound for Y , i.e., Y ≥ c(1−ε2)
(2N−c)+mε , with probabil-

ity at least 1−e−mqε22/2−2e−2ε2m2/Nk. Thus, this shows
that with high probability, the ratio S(fi∧fj)

S(fi∨fj)
is close to

the Jaccard index c
2N−c , for appropriately chosen values

of m and k. We have thus proven our Theorem 1.
Lastly, we give an example to illustrate our bounds in

our application scenario. Suppose we set εm ≥ 5, m ≈
1000N , k = 6. Then, our analysis shows us that with

probability at least 95%, Y ∈
(
c(1− 1√

2c
)

2N−c+5 ,
c(1+ 4√

c
)

2N−c−5

)
,

i.e., that ratio of the bits set to the union is very close
to the Jaccard index.
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